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Abstract. 

Lens designers routinely use optimization in their everyday practice. Local optimization 

algorithms lead to the nearest minimum. For comprehensive research on lens architecture, 

ZEMAX offers two options for multi-extremum optimization: Global and Hammer. They provide 

a number of solutions depending on the designer’s choice for starting point. Both Global and 

Hammer optimization options are stochastic in nature and cannot ensure completeness of the 

result. In this paper, a new deterministic approach for multi-extremum optimization is proposed. 

Optimal solutions for even moderate complexity optical architectures are shown to be located 

within extended merit function valleys. Merit function minimums are separated by saddle points. 

An effective algorithm to travel over these valleys from one local minimum through a saddle point 

to another minimum is proposed. From this new minimum, a new valley is found which leads 

through another saddle point to another minimum and so on. In a finite number of steps, a complete 

mutually connected system of stationary points (minimums and saddle points) are revealed, giving 

a reasonable assurance that the search is completed. 

Introduction. 

The design space of optical systems is a complicated multidimensional space, comprising of a 

number of optimal solutions (local minimums of the assigned merit function). In early work [1] 

10 such local minimums were found using expert system based optimization even for a simple 

Cooke triplet. This multi-extremum optimization problem attracted close attention from the 

beginning of the computer aided lens design era. A number of effective algorithms were proposed, 

the majority of them stochastic. While they are able to solve the main practical problem, revealing 

a number of minimums, they cannot ensure that all minimums were found. An effective blow-

up/settle-down (BUSD) algorithm was proposed in Ref. [2]. At the first, a local minimum is found 

depending on the user’s choice of the starting point. After that, BUSD forces the design to “blow-

up”, thereby changing the values of the optimization parameters significantly. This is sufficient to 

escape the ‘gravity’ of the already known local minimum and the following local optimization will 

“settle-down” the search to a new one. The direction of “blow-up” step is the direction of Dumped 

Least Square (DLS) [3] method searching for the maximum. In Ref. [4], Optical Research 

Associates announced a global optimization option for their Code V lens design software but did 

not give any details on its operation principals. The described behavior is similar to that which was 

shown in Ref. [2]. Simulated annealing is another stochastic algorithm, which uses random steps 

at every cycle and accepts all steps which result in a reduction of optimization criterion and others 

with some probability. This tactic prevents the search algorithm from losing solutions in the areas 
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separated from the starting point with large values of the merit function [5]. ZEMAX commercial 

software has two multi-extremum optimization options: Global and Hammer optimization. Global 

optimization uses genetic algorithm techniques with fast local optimization solutions upgrade [6]. 

Hammer algorithm uses heuristic parameters adjustment and optimization. However both options 

are stochastic and without a guarantee that the deepest minimum was found. 

    In Ref. [7], an escape function to the global optimization method was proposed. In this method, 

the first minimum is found with the use of local optimization. This minimum creates a crater in 

the multidimensional optimization space. The special escape function has two adjustable 

parameters and is added to the optimized function in order to fill up the minimum crater, thus 

eliminating any already found minimum from consideration. The next local optimization will lead 

to the next minimum. The problem is finding appropriate values of these two parameters to fill the 

crater smoothly, without creating a new artificial minimum. Authors found several solutions to 

this problem, and in a design example found 50 solutions for their six-elements lens. Nevertheless, 

the exact universal solution for the escape function parameters was not found in this paper nor in 

later developments [8]. It is the first determinative algorithm in the row of proposed global 

optimization strategies. While the initial starting point can be chosen arbitrary, the algorithm was 

designed to sequentially find all minimums. 

In the recent years, promising results were reported in the systematic search of minimums for 

multi-extremum optimization of optical systems by consequent search of a new minimum through 

the closest saddle points [9]. Based on the general topology consideration in Ref. [9], saddle points 

were shown to be points of transition between neighboring minimums. Transitioning between 

minimums includes two general steps: saddle point detection (optimization from the minimum to 

saddle point) and local optimization to a new minimum. In the Ref. [9] such a saddle point 

detection (SPD) algorithm was proposed. Local optimization to a new minimum was not discussed 

in detail, thus was probably conventional. Such methodology gives an opportunity to reveal new 

minimums in a sequential and systematic way. A closed system of minimums mutually bounded 

by saddle points has a high probability that the system is complete. Cooke triplet global 

optimization was reported using this method. Moreover, in Ref. [10, 11] it is shown that with 

addition to the optical system a neutral null-element it creates a new saddle point and can pave the 

way to new minimums. 

However some specific aspects related to optimization of more complex systems are not 

discussed. It is known that optimization of optical systems has a specific problem, an ill-

conditioning of the Hessian matrix [3, 12, 13]. Because the Hessian matrix is ill-conditioned, deep 

multidimensional valleys on the optimization field exist. Local optimization methods do not work 

properly in this case. To solve this problem the method of conjugated gradients was proposed [12] 

but only works up to a certain point of valley complexity and then can fail. Newton methods used 

dumped least square algorithm (DLS) [3, 13] which suppresses dependable parameters but will 

come straight to the closest point of the valley bottom instead of the minimum. Both methods give 

some relief to the stated problem, but a more deep consideration must be taken. This paper 

demonstrates that a very specific method of traveling through the bottom of the valleys has to be 

developed to reveal a structure of the merit function. This method leads to a minimum rather than 

to the closest merit function valley bottom. It then reveals saddle points and leads to a new 

minimum sequentially paving a way to achieving a systematic multi-extremum search. 
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  1. Objective for optimization. Signature features of the merit function landscape. 

 

   As an example, a ZEBASEV K_002 20x microscope objective was chosen for optimization. Its 

layout is shown in Fig. 1. 

 

 

 

 
 

a)    Objective layout. 

 
b)   Zoomed view. 

Fig. 1 Microscope objective K_002 from ZEBASEV. 

 

The optical prescription is shown in the Table 1. All glasses are of Schott preferred type from the 

2019 catalog. The eight optimization parameters are marked with the symbol “v” - six radii and 

two air gaps. In the proceeding text, radii will be denoted as Ri and air gaps as Ti. In order to keep 

the lens manufacturable, avoid thin edges, and negative air gaps and other problems, optimization 

parameters have the following constraints. 

       

                                       abs(R2) >= 10.0 mm, 

                                       abs(R3) >= 7.7mm, 

                                       abs(R4) >= 11.0 mm, 

                                       abs(R5) >= 8.0mm, 

                                       abs(R7) >= 4.0 mm, 

                                       abs(R8) >= 3.0 mm, 

                                       4.0 mm < T6 < 8.2 mm, 

                                       T9 >= 0.3 mm.                                                        (1) 

 

  The aperture stop (entrance pupil) is located at surface 1. The Entrance pupil diameter is 8 mm 

and the objective operates with F# = 1.02 at the image space. Spot diagrams at three image heights: 

-0.4 mm (object height 8 mm), -0.2 mm (object height 4 mm) and 0 mm are shown in Fig. 2. The 

size of spots are shown in microns. The size of the square field in Fig. 2 is 20 um while all the 

remaining spot diagrams in the paper are 10 um. To reduce computational burden associated with 

raytracing derivatives test optimization was made at a single wavelength of 0.587 um.  
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Table 1 Optical prescription of the K002 objective. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     25.8691  V       2.6182    K10 

         3      -7.9612  V       1.0414    SF1 

         4    -26.2169  V       0.1524    

         5      11.3792 V       2.1590    N-SK5 

         6       Infinity       6.7313  V     

         7        4.5770  V       2.5908    N-SK5 

         8      -3.0002   V                                     0.7874    F5 

         9       Infinity                                    1.4882  V    

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

 
                                                    Fig. 2 Spot diagrams. 

 

    To estimate the image quality, each beam consists of 79 rays (5 rays at the pupil radius) for each 

field point were raytraced. The criterion of optimization, C, was a sum of squared lateral 

aberrations plus constraints violation penalty function.  

 

                                   C=∑ { ∑ [(79
𝑖=1  𝑥𝑖 − 𝑥00𝑚)^2 + (𝑦𝑖 − 𝑦00𝑚)^2]} + 𝑃;3

𝑚=1           (2) 
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where m is beam number, xi -x ray coordinates at the image plane, yi- y coordinates, x00m – 

paraxial x image coordinate (for all beams x00m=0.0 mm) and y00m -paraxial y image coordinates 

at the image plane ( y000= 0.0 mm; y001= -0.2 mm and y002= -0.4 mm). So, criterion C depends 

on both lateral aberrations and current magnification. P is a penalty function which is zero inside 

constraints area and grows fast in the case of constraints violation. 

For radii: 

                                       P= 0.0 inside constraints and 

                                       P= 0.25*(RIConstraint-RI) ^2 outside constraints                       (3a) 

For airgaps: 

                                       P= 0.0 inside constraints and 

                                       P= (TIConstraint-TI) ^2 outside constraints                                 (3b)              

  

 where RIConstraint- constraint radii and TIConstraint – constraint thicknesses.  For the ZEBASE 

K_002 objective, C= 6.08E-4, indicating that the lens is well optimized. Attempts for further 

improvement with ZEMAX local optimizations (DSL or Orthogonal descent resulted in wobbling 

around this point without sensible criterion improvements. A quadratic model of C in the vicinity 

of the start point can help reveal the reason of such local optimization behavior. First and second 

derivatives of the criterion function were calculated using the finite difference method. The use of 

radii in the optimization makes it impossible to overstep the sign barrier. So, curvatures and air 

gaps will be used as optimization parameters. For derivative calculations, air gap increments were 

3 um and increments for curvatures were 0.00002 mm-1.  The quadratic model of the criterion C is 

 

                               C(xi) = C0 + gT(xi)*(Δxi) +0.5*( Δxi
T)Q(Δxi) ;                                       (4) 

 

where gT is transposed vector of first derivatives, Δxi – vector of parameter increments, and Q is 

Hessian matrix of second derivatives. The Hessian matrix has a diagonal symmetry. For such 

matrices, linear algebra states that rotations of coordinate system make matrix Q diagonal or 

 

                             C(ui)= C0+ ∑ 𝑔𝑢𝑖 ∗ Δui8
𝑖=1  + 0.5 ∗ ∑ Ei ∗ (Δui) ^28

𝑖=1                               (5) 

 

where Δui parameters increments in rotated coordinates system, gui are first derivatives in rotated 

coordinate system, and Ei eigen values of the Hessian matrix. For the optical prescription (Table 

1) Eigen values are shown in the Table 2. 

 

Table 2 Eigen values. 

Number    1     2      3     4       5       6      7      8 

Eigen 3.67E+5 3.00E+2 1.98E+1 1.90E+2 2.54E-1 1.57E-1 6.67E-4 5.72E-6 

 

Derivatives of variables in the rotated coordinates system are shown in the Table 3. 

 

Table 3 Derivatives. 

Number    1     2      3     4       5       6      7      8 

Derivat. -9.2E-2 3.64E-5 -1.3E-3 2.9E-3 -1.6E-4 5.4E-4 2.2E-4 1.4E-4 
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   The two last eigen values are very small indicating that the Hessian matrix is ill-conditioned. 

Across the six variables in the rotated coordinate system, the criterion function will be a fast-

growing narrow parabola (Eq. (5)) and along the last two variables, the criterion landscape is some 

kind of slow changing valley. Fig. 3 shows a criterion C(R2, R3) contour map in the area of the 

optimization starting point of  (Table 1) with this valley.  

 

 
Fig. 3 Contour map of the criterion C in the vicinity of the starting point. 

 

II. Classical local optimization methods.  

 

 There are two basic methods used in local optimization of nonlinear functions: gradient descent 

method [3, 12, 13] and Newton method [3, 13]. In our case, consequent gradient vectors (X0X1 

and X1X2) will be counter collinear (Fig. 3). Gradient method begins to oscillate and stop at some 

point close to the valley bottom. The position of this point depends on the location of starting point 

X0. Criterion of the Newtonian dumped least-square method (DLS) is 

 

                  {∑ [gui + Ei ∗ (Δui) 8
1 ]} ^2+δ*∑ (Δui)^28

1 =min,                                              (6)  

or in the other words the squared sum of criterion first derivatives plus the weighted Euclidean 

norm of the step will be a minimum. δ is damping constant. As in a gradient method optimization, 

steps will be repeated while recalculating the quadratic model of Eq. (5) until convergence. The 

solution at every step for each orthogonalized parameter is 
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                           Δui  = (- gui*Ei)/( Ei^2 + δ)                                                                     (7) 

 

hence with any Ei close to zero (ill conditioned Hessian matrix) solutions still exist. DLS is tending 

to converge toward the closest to starting point valley bottom point where the squared sum of 

criterion first derivatives is minimal. 

 

III. Proposed optimization strategy to operate on the perplexed merit function landscape. 

 

In the vicinity of each minimum (Fig. 4) it is encircled with equimagnitude surfaces (surfaces 

having the equal value of the optimization criterion). Equimagnitude surfaces bulge out of 

minimums. At some point S, with criterion value CS, equimagnitude surfaces will meet each other.   

 

 
Fig. 4 Multi-extremum search through the saddle point. 

 

If we will go over the normal to the equimagnitude surfaces at the point S in both directions, we 

will enter equimagnitude surfaces encircling minimums (surfaces CA and CB). The value of 

criterion will be less than CS for any small step in both sides. It is possible only if the gradient at 

the point S is zero and eigen value of the eigen vector E1 parallel to the normal is negative. At the 

point S both equimagnitude surfaces have common tangential hyperplane 𝞨. All points at this 

hyperplane are located outside equimagnitude surfaces CA and CB and have a criterion value lager 

than CS. Hence, eigen values in this hyperplane are positive. So, at the point S first derivatives are 

zero, one eigen value negative while others are positive [9]. Such point is the saddle point of the 

Morse one type. Saddle points are separating areas of attraction to the neighboring minimums. The 

special roll of the saddle points in the stationary point networks was noticed at the first time in 

Ref. [14]. 

A gradient curve is a curve orthogonal to the equimagnitude surfaces at any point. Gradient 

curve ASB follows through the saddle point S. All other gradient curves connecting minimums A 

and B (for example curve 𝞧1 ) will inevitably step out of equimagnitude surfaces CA and CB and 

enter areas with criterion lager than CS. So, the ASB curve has the lower maximum value of 

criterion besides the other gradient curves connecting minimums A and B. In other words, it is the 

path of slower growth leading from the minimum A toward saddle point and the path of slower 
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descent toward minimum B. Merit (criterion) function valleys are those paths of slower 

growth/descent.  

Moreover, there is no guarantee that any gradient curve originated from the minimum A rather 

than ASB will connect minimums. For example, curve 𝞧2 will not do so. Therefore, merit function 

valleys (ASB) are the only reliable path from the minimum A to the minimum B. In this paper 

starting from the initial point O, the local optimization will lead to some point at the closest valley 

bottom (point V in the Fig. 4). Then, the optimization will travel over the valley bottom until it 

will reach local minimum (point A). Further travel over the valley bottom leads to the saddle point. 

After that travel over the valley will lead to the next minimum. From this minimum, the 

optimization will pave the valley to a new saddle point and so on. By reaching constraints surface 

the closest minimum on the surface will be searched. If this minimum is separated from the 

previous one with the saddle point it will be an entrance to a new valley on the way back to the 

optimization space. This new valley will lead to a new minimum. Such tactics will be used in this 

paper. But in general, multi-extremum optimization has to be made on the constraint surface and 

all new valleys investigated.  

Travel over the valley bottom will be performed in repeated cycles. Each cycle begins with 

DLS correction to the valley bottom. At the DLS step, the criterion C0 will be calculated and using 

raytracing, finite differences technique vector g of derivatives and Hessian matrix Q of Eq. (4). 

Then using MATLAB eigen function will be calculated eigen vectors Vi and eigen values Ei.  The 

DLS step of Eq. (7) will be applied to the first six orthogonalized parameters and will not be 

applied to the last two dependable parameters at all. So the DLS step will lead to the closest point 

at the bottom of valley where derivatives across strong variables ui have to be zero (vertex of fast 

parabolas) but derivatives over weak variables with small eigen values can have some small value 

(slow growth or descent). The next operation will be a step over eigen vector providing the lower 

criterion increment. This lower criterion increment can be negative indicating descent to the 

minimum. Or it can be positive indicating travel over valley toward the saddle point. The 

optimization cycle will be repeated paving the path over the stationary points network. 

    In Ref. [9] the saddle point detection method (SPD) was proposed. In the SPD method, several 

arbitrary directions from the local minimum are chosen. In each direction a step will be made and 

then minimum of the criterion at the hyperplane orthogonal to the chosen direction will be found. 

After that a new step will follow from the minimum at the hyperplane and so on. Those minimums 

constitute the SPD curve. The maximum of the criterion over successful SPD curves will be the 

saddle point. The search in directions located within a wide enough solid angel will be successful. 

Searches in other directions may not. In this paper, saddle point optimization directions are better 

defined as directions of slowest growth (toward eigen vectors having a reasonably small eigen 

value). 

 

IV. Travel over R2 valley. 

 

To travel over the valley, the leading variable will be chosen. It will prevent the optimization 

from wobbling. In this paper, the first leading variable will be a surface number two curvature and 

travel begins in the direction of increasing R2 curvature. All eigen vectors with negative 

projections on the first optimization parameter (R2 curvature) will be rotated 180o. Step in the 

curvatures/air gaps space was experimentally chosen as 0.003 (gaps were specified in mm’s and 
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curvatures in mm-1 ). With travel over valley in the direction of increasing surface number two 

curvature criterion C at the beginning decreases until it reaches minimum with C=5.25E-4 and 

then increases until it will reach R3 (radius  -7.7 mm) and T6 (4 mm) constraints surface with 

C=1.65E-3 without passing saddle points. The layout and spot diagrams at the R2 valley minimum 

are shown in the Fig. 5 and optical prescription in the Table 4. 

 

                                                                                                       Table 4 R2 valley minimum. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     22.4880        2.6182    K10 

         3      -8.1862        1.0414    SF1 

         4    -28.3326         0.1524    

         5      11.5102        2.1590    N-SK5 

         6       Infinity       6.7163     

         7        4.4972       2.5908    N-SK5 

         8      -2.9996                                   0.7874    F5 

         9       Infinity                                    1.3877    

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

 

 
a) R2 valley minimum layout. 
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c) Spot diagrams. 

Fig. 5 R2 valley minimum. C=5.25E-4. 

 

  To get some perception on the length of this valley let’s look at the bottom points with slightly 

higher criterium C=5.3E-4. The difference in image quality (spot diagrams) between points having 

C=5.25E-4 and C=5.3E-4 look indistinguishable. Here is the point with lager R2 value which has 

C=5.3E-4. 

 

Table 5 Optical prescription at the point of the R2 valley with C=5.3E-4. Higher R2 value. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     23.9823        2.6182     K10 

         3      -8.0991       1.0414     SF1 

         4    -27.6506         0.1524     

         5      11.4687       2.1590     N-SK5 

         6       Infinity       6.7265      

         7        4.5293       2.5908     N-SK5 

         8      -2.9998                                  0.7874     F5 

         9       Infinity                                    1.4559     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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                                                     Fig. 6 Spot diagrams. 

 

 Here is the point with lower R2 value and again the same C= 5.3E-4. 

 

Table 6 Optical prescription at the point of the R2 valley with C=5.3E-4. Lower R2 value. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     21.3671        2.6182     K10 

         3      -8.2355       1.0414     SF1 

         4    -28.9572         0.1524     

         5      11.4951       2.1590     N-SK5 

         6       Infinity       6.6639      

         7        4.4990       2.5908     N-SK5 

         8      -2.9996                                  0.7874     F5 

         9       Infinity                                    1.3461     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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b) Spot diagrams. 

Fig. 7 Point at the R2 valley with C=5.3E-4. Lower R2 value. 

 

There is a sensible difference of 2.6 mm in radius R2 between two points having C=5.3E-4, 

but not any visible difference in spot performance. So, the minimum is not just a point in the 

parameter space but rather an area with a size that depends on the requirements of the criterion 

performance. 

 

V. Search for a deepest point in the R2 valley vicinity. 

 

    The R2 valley minimum that is shown in Table 4 (Fig. 5) was found by traveling over the 

criterion valley in the direction of R2 radius decrease. To investigate the vicinity of R2 valley 

minimum for the deepest solution, a new search was conducted. Every eigen vector increment ΔCi 

of the quadratic form of Eq.(5) was analyzed in both directions, the direction of i-th eigen vector 

and the opposite direction. The step was performed in the direction which gave the deepest 

decrease of the criterion. After several steps the point with criterion C=5.17E-4, optical 

prescription of Table 7 and spot diagrams shown in Fig. 8 was found. 
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                            Table 7 Optical prescription at the deepest minimum with C=5.17E-4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     24.4562       2.6182     K10 

         3      -8.2221       1.0414     SF1 

         4    -26.7133        0.1524     

         5      11.7542       2.1590     N-SK5 

         6       Infinity       7.0579      

         7        4.3285       2.5908     N-SK5 

         8      -2.9995                                  0.7874     F5 

         9       Infinity                                    1.3086     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

 
                                                     Fig. 8 Spot diagrams. 

 

VI. Travel to the R7= 4 mm R8= -3 mm constraints surface. Search from R7/R8 constraints  

       surface to the opposite side. 

 

The R2 valley search in the direction of decreasing R2 ended at the R3= -7.7 mm, T6=4 mm 

constraints surface without showing a saddle point. So, further search in this direction is not 
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promising. Another constraints surface closest to the minimum of the R2 valley (Table 4) is 

R7=4mm and R8= -3 mm surface. Travel over the direction of the R7 reduction at first reveals a 

minimum with C= 5.17E-4. The absence of saddle point indicates that we are still in the same 

valley, but just proceeding deeper. This deeper minimum will be conditionally marked as another 

minimum #2 to simplify perception of the search scheme.  The optical prescription of the minimum 

#2 is shown in Table 8. Moreover, the optical prescription of this minimum and the image quality 

are very close to the deepest point at the R2 valley shown in the Table 7. This gives some assurance 

of the reliability of the proposed method.  

 

                            Table 8. Optical prescription of the minimum number 2 with C=5.17E-4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     24.4555       2.6182     K10 

         3      -8.2139       1.0414     SF1 

         4    -26.7572        0.1524     

         5      11.7407       2.1590     N-SK5 

         6       Infinity       7.0390      

         7        4.3406       2.5908     N-SK5 

         8      -2.9995                                  0.7874     F5 

         9       Infinity                                    1.3193     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

Further travel reveals a saddle area with criterion C= 5.28E-4 which is close to landing point at the 

constraints surface. Then at the transition zone, where penalty function takes it power, all eigen 

values turn out positive and very close to this landing point the minimum is found with criterion 

C=5.26E-4. The optical prescription is shown in the Table 9. 

Let’s step slightly out of the R6 and R7 constraints surface inside the optimization space to 

neutralize penalty functions influence on eigen vectors. A 3 um (microns) change in R6 and R7 

will be enough. Eigen vectors are shown in the Table 10. The first column are increments of 

criterion along eigen vectors with the step S=0.003. Eigen vector projections on coordinate axis’s 

of prescription parameters are shown as V1-V8. From Table 10, is clear that for the lower 

increment dC leading out of the constraints surface radius is R8 (V6 are projections of the eigen 

vector on the axis of surface number 8 curvature). So, stepping out of the constraints surface we 

are in the R8 “tube” which is guiding us to the positive values of the R8. Traveling over the R8 

“tube” passed saddle point with criterion value C= 1.22E-3 and hit the opposite R7= 4mm R8= 

3mm constraints surface at the point with C=6.98E-4. The optical prescription at the landing point 

is shown in the Table 11. 
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Table 9. Optical prescription at the minimum on the R7=4mm, R8= -3mm wall. C=5.26E-4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     22.3243       2.6182     K10 

         3      -8.5273       1.0414     SF1 

         4    -27.2037       0.1524     

         5      11.7920       2.1590     N-SK5 

         6       Infinity       7.4447      

         7       3.9996       2.5908     N-SK5 

         8      -2.9996                                 0.7874     F5 

         9       Infinity                                    0.9258     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

   

                                                                                                               Table 10. Eigen vectors.                               

  dC  V1   V2   V3    V4   V5    V6    V7 V8 

1 1.6E00 4.6E-1 2.4E-1 -6.6E-1 5.4E-1 8.8E-2 1.1E-3 3.8E-3 1.4E-2 

2 9.0E-4 -4.2E-1 4.1E-2 1.3E-1 3.6E-1 8.2E-1 2.4E-1 -2.3E-2 1.9E-2 

3 7.6E-4 -3.8E-1 8.9E-1 3.0E-2 -1.4E-3 -2.4E-1 3.0E-3 1.4E-4 -6.6E-3 

4 -2.5E-5  6.5E-1 3.8E-1 3.5E-1 -3.6E-1 4.2E-1 2.6E-2 -1.7E-2 2.8E-2 

5 3.2E-5  2.1E-1 -1.1E-2 6.5E-1 6.6E-1 -2.8E-1 1.3E-1 2.0E-2 2.5E-2 

6 4.6E-6 -3.8E-2 -1.4E-2 -1.0E-1 -9.1E-2 5.2E-3 9.7E-1 6.7E-2 2.0E-1 

7 1.3E-6  1.7E-2 7.4E-3 -6.0E-4 1.3E-3 2.9E-2 1.9E-1 1.8E-1 -9.7E-1 

8 6.0E-7  5.0E-3 -6.4E-3 -5.1E-3 7.7E-3 -2.7E-2 1.0E-1 -9.8E-1 -1.6E-1 

 

Table 11. Optical prescription of the landing point at the R7= 4.0 mm R8= 3.0 mm wall. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     19.5445       2.6182     K10 

         3      -8.5775       1.0414     SF1 

         4    -25.7804       0.1524     

         5      11.8416       2.1590     N-SK5 

         6       Infinity       7.3536      

         7        3.9998       2.5908     N-SK5 

         8        3.0000                                 0.7874     F5 

         9       Infinity                                    0.6345     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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Finally, optimization over the valley with leading variable T6 will find a minimum with 

C=6.9E-4.  The optical prescription is shown in Table 12 and the layout and spot diagrams are 

shown in Fig. 9. 

 

                                                   Table 12 Optical prescription at the minimum number 3. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     21.6736       2.6182     K10 

         3      -8.3989       1.0414     SF1 

         4    -24.1668       0.1524     

         5      11.2879       2.1590     N-SK5 

         6       Infinity       7.3967      

         7       3.9993       2.5908     N-SK5 

         8       3.0000                                 0.7874     F5 

         9       Infinity                                    0.5524     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

 
                                                    a)  Spot diagrams. 
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b) Layout. 

Fig. 9. Optimal solution at the constrains wall R7= 4.0 mm and R8= 3.0 mm. C=6.9E-4. 

 

VII. Navigation from T6=8.2 mm R8= -3 mm constraint surface to a new minimum. 

 

Travel over the main valley in the direction of R2 growth ended at the T6 8.2 mm, R8=-3mm 

constraints surface. Search for the minimum at the surface opens a new R5 “tube” (valley). Short 

travel found a new minimum with criterion C= 6.08E-4 shown in the Fig. 10 with optical 

prescription in the Table 13. A new valley starting from the minimum number 4 is leading to the 

R7=4.0 mm, R8=3.0 mm constraints surface and then to the minimum number 3 (Fig. 11). 

 

                                                    Table 13. Optical prescription at the minimum number 4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     61.4631       2.6182     K10 

         3      -7.7289       1.0414     SF1 

         4    -19.0863       0.1524     

         5      12.1859       2.1590     N-SK5 

         6       Infinity       8.1949      

         7       3.9994       2.5908     N-SK5 

         8      -2.9992                                0.7874     F5 

         9       Infinity                                    1.2096     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

 
b) Layout. 
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c) Spot diagrams. 

Fig 10 Optimal solution on the way out of T6-R8 constraints surface with C=6.08E-4. 

 

VIII. Navigation summary.    

 Here is an illustrative summary of travel through the valleys maze revealing a complete mutually 

connected system of stationary points (minimums and saddle points). 

 
Fig. 11 Navigation through merit function valleys maze. 
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IX.  Optimization with extended waveband 

 

  While the development of lasers, laser diodes, and VCSELs has led to an important segment of 

imaging optics that are designed for narrow wavebands, the majority of practical applications 

today still require objectives that operate in extended wavebands. Table 14 shows the optical 

prescription of a redesigned ZEBASE V K002 microscope objective, which was optimized to the 

nearest merit function valley to operate in an extended waveband of 0.45 - 0.65 µm. Optical glasses 

in the ZEBASE V prescription were substituted with preferred glasses from the Schott 2019 

catalog. The optimization criterion Cpoly is sum of criterions C of Eq. (2) at three wavelengths: 

0.45 µm, 0.587 µm and 0.65 µm.  As shown in Table 14, eight optimization parameters are marked 

as variables with the symbol “v”. Constraints on the optimization parameters were shown in the 

Eq. (1). The layout is shown in Fig.12 and spot diagrams in Fig. 13. The criterion Cpoly at this point 

is 3.29E-3.  

 

Table 14 Optical prescription of the polychromatic version of K002 ZEBASE V objective. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     25.8124  V       2.6182    K10 

         3      -7.9670  V       1.0414    SF1 

         4    -26.2362  V       0.1524    

         5      11.3779 V       2.1590    N-SK5 

         6       Infinity       6.7307  V     

         7        4.5777  V       2.5908    N-SK5 

         8      -3.1197   V                                     0.7874    F5 

         9       Infinity                                    1.4852  V    

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

 

                     
Fig. 12 Polychromatic version of the microscope objective K_002 from ZEBASEV. 
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                                                   Fig. 13 Spot diagrams. 

 

  From this point, attempting to optimize over the merit function valley in the direction of 

decreasing radius R2 soon encounters constraints surface with value of radius R8= -3mm. Further 

descent over the valley within this constraint led to an optimal point with criterion Cpoly= 2.84E-3. 

The optical prescription for this optimal point is shown in Table 15, the layout is shown in Fig. 14, 

and spot diagrams are shown in Fig. 15. 

 

                               Table 15 Optical prescription of the optimal point with Cpoly= 2.84E-3. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     20.9872         2.6182    K10 

         3      -8.4019         1.0414    SF1 

         4    -31.1107         0.1524    

         5      11.6116        2.1590    N-SK5 

         6       Infinity       6.8475       

         7       4.3968         2.5908    N-SK5 

         8      -3.0000                                        0.7874    F5 

         9       Infinity                                    1.3339      

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   
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                                        Fig. 14 Layout at the optimal point. 

 

             
                                                 Fig. 15 Spot diagrams. 

 

  Next, consider optimization over the valley in the direction of increasing radius R2. This first 

leads to the constraint surface R8= -3mm, followed by constraint surface T6= 8.2 mm, at which 

point the criterion value Cpoly= 3.75E-3. Further descent over the valley within the six-dimensional 

constraint surface (R8, T6) leads to an optimal point with criterion Cpoly= 3.71E-3. The optical 

prescription for this point is shown in Table 16, the layout is shown in Fig. 16, and the spot 

diagrams are shown in Fig. 17. 

  If we will move in the direction of reducing T6 from the point with prescription of the Table 16 

(keeping R8 = -3mm), we would be led back to the minimum of the Table 15. This means we have 

two valleys connecting these two points, where each valley does not have a saddle point. Thus, the 

minimum at the constraint surface (R8, T6) is not an independent minimum. Such minimums are 

formed at the constraint surface when it crosses a full-size valley in the unconstrained space. 

Another valley from the optimal point with Cpoly= 2.84E-3 (Table 15) in the direction of increasing 

radius R8 leads through a saddle point to the minimum with prescription similar to the Table 12. 

However, this minimum has poor quality. The criterion at this point is Cpoly= 1.41E-2. 
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 Table 16 Optical prescription of the optimal point with Cpoly= 3.71E-3 at the constraints  

                 surface (R8, T6). 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     51.9012        2.6182    K10 

         3      -7.9053         1.0414    SF1 

         4    -21.3046         0.1524    

         5      12.3816       2.1590    N-SK5 

         6       Infinity       8.2000       

         7       4.0651        2.5908    N-SK5 

         8      -3.0000                                        0.7874    F5 

         9       Infinity                                    1.4145      

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

                      
        Fig. 16 Layout of optimal point at the (R8, T6) constraints surface. 

 

                 
                                               Fig. 17 Spot diagrams 
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VIII. Conclusion. 

 

In this paper was shown that local minimums in optimization of even moderate complexity 

optical systems are located over merit function valleys and specific algorithms for traveling over 

such valleys were proposed. No sensible difference in the criterion values over several mm’s in 

radii or air gaps at valleys bottom was found. So these minimums can not be considered as some 

points in the multidimensional optimization space but are areas at the valley bottoms. Sometimes 

these valleys are so long that the choice of a solution can be based on manufacturability/cost 

criterions. These extended valley areas of solutions do not relax tolerances because at every point 

a fine combination of prescription parameters is required. A special role of saddle points as a point 

of separation of attraction areas to neighboring minimums was clarified. It was shown that the 

gradient curve connecting neighboring minimums through the saddle point has a lowest maximum 

value of optimization criterion besides other such curves connecting these minimums. So, these 

gradient curves are the path of the slowest growth/descent and therefore are the merit function 

valleys. An efficient algorithm to travel over these valleys from the one minimum to a saddle point 

and further to a new minimum was proposed. 

Practical optimization in lens design is associated with number of constraints on parameters. 

In the constrained optimization space, valleys of the criterion function can avoid mutual 

intersections. Connections between valleys can be found on the constraint surfaces. Local 

minimums at the constraint surfaces will be valley footprints. Each new minimum will be an 

entrance to the new valleys/tunnels leading to other criterion minimums. Results of multi-

extremum optimization of the microscope objective demonstrated an efficiency of the proposed 

algorithms. Extended work with optimization of other type of lens architectures [15] has to be 

preformed to mature the algorithm. The relationship between Seidel aberration theory [16] and 

multi-extremum optimization results has to be clarified as well. 

Optimization algorithms required calculations of the first and second derivatives of the 

criterion in regard to optimization parameters. In this research, raytracing tests of derivatives were 

used. However, in the future analytical derivatives tests [17, 18] can improve the accuracy and 

accelerate proposed optimization procedures. The proposed optimization algorithms in this paper, 

are associated with extended computer burden and cannot be recommended to lens designers for 

everyday use. But further progress in computer CPU’s clock speed together with implementation 

of multiple core parallel processing will probably make it possible to use this method of global 

optimization in commercial lens design software soon enough. 
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